Problems on The Infinite Series

1 Problems on convergence

 $(v₀)$

- 1. Give the ϵ -definition of convergence of an infinite series \sum a_n , where I is an infinite set.
- 2. If $\sum a_n$ converges then prove that the sum is unique. n∈I
- 3. Prove that a necessary condition for the convergence of \sum $\sum_{n\in I} a_n$ is $\lim_{n\to\infty} a_n = 0$. Is that condition sufficient? Justify.

n∈I

- 4. State and prove the necessary and sufficient condition for the convergence of an infinite series $\sum a_n$.
- n∈I 5. Show that if \sum n∈I a_n converges, then there is a positive number M so that all the sums $\left| \sum_{n=1}^{\infty} a_n \right|$ n∈I $a_n \leq M$ for any finite subset $I_0 \subset I$.
- 6. Check the convergence of the following infinite series and find their sum, if converge

(i)
$$
\sum_{n=1}^{\infty} \frac{1}{2^n}
$$
 (ii) $\sum_{n=1}^{\infty} \frac{1}{n^{1+\frac{1}{n}}}$ (iii) $\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1}$ (iv) $\sum_{n=1}^{\infty} \sin\left(\frac{n!\pi}{720}\right)$ (v) $\sum_{n=1}^{\infty} \tan^{-1}\left(\frac{1}{n^2 + n + 1}\right)$
\n(i) $\sum_{n=1}^{\infty} \frac{1}{(n!)^2}$ (vii) $\sum_{n=1}^{\infty} \frac{n^2 - n + 1}{n!}$ (viii) $\sum_{n=1}^{\infty} \frac{n^2}{n!}$ (ix) $\sum_{n=1}^{\infty} \frac{1}{4n(n+1)(2n+1)}$ (x) $\sum_{n=1}^{\infty} \left(\frac{\sum_{k=1}^{n} k}{n!}\right)$

7. Prove that any rearrangement of terms of an infinite positive series does not change its sum.

2 Problems on the series of non-negative terms

- 1. (Comparison Test) Let $\sum_{n=1}^{\infty}$ $n=1$ a_n and $\sum_{n=1}^{\infty}$ $n=1$ b_n be two series of positive terms. Check the convergence of $\sum_{n=1}^{\infty}$ $n=1$ a_n depending upon $\sum_{n=0}^{\infty} b_n$
	- (i) If there is a natural number N such that $a_n \leq k b_n$ for all $n \geq N$, and k is a fixed positive number. (ii) If there is a natural number N such that $\frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n}$ $\frac{n+1}{b_n}$ for all $n \geq N$.
	- (iii) If $\lim_{n\to\infty}\frac{a_n}{b_n}$ $\frac{\partial n}{\partial n} = l$, where l is a non-zero finite number. Also discuss the case when $l = 0$.
- 2. Determine for which value of α the following series are convergent

(i)
$$
\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}
$$
 (ii) $\sum_{n=1}^{\infty} (\sqrt[n]{n} - 1)^{\alpha}$ (iii) $\sum_{n=1}^{\infty} (1 - n \sin \frac{1}{n})^{\alpha}$ (iv) $\sum_{n=1}^{\infty} (\frac{(2n-1)!!}{(2n)!!})^{\alpha}$
3. Prove that if a series $\sum_{n=1}^{\infty} a_n$ with positive terms converges, then $\sum_{n=1}^{\infty} (p^{a_n} - 1)$, where

- $n=1$ $n=1$ $(p^{a_n}-1)$, where $p>1$ also converges.
- 4. Suppose a series $\sum_{n=0}^{\infty}$ $n=1$ a_n of non-negative terms converges. Prove that the series $\sum_{n=1}^{\infty}$ $n=1$ $\sqrt{a_n a_{n-1}}$ also converges but not conversely. What can you say about the converse statement when $\{a_n\}$ is monotone decreasing.
- 5. Assume that a positive term sequence $\sum_{n=1}^{\infty}$ $n=1$ a_n diverges and $\{S_n\}$ be its n^{th} partial sequence. Study the behaviour of

(i)
$$
\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}
$$
 (ii)
$$
\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}
$$
 (iii)
$$
\sum_{n=1}^{\infty} \frac{a_n}{1+n^2 a_n}
$$
 (iv)
$$
\sum_{n=1}^{\infty} \frac{a_n}{1+a_n^2}
$$
 (v)
$$
\sum_{n=1}^{\infty} n a_n \sin\left(\frac{1}{n}\right)
$$
 (vi)
$$
\sum_{n=1}^{\infty} \frac{a_n}{S_n^2}
$$
, where $\alpha > 0$ (vii)
$$
\sum_{n=1}^{\infty} \frac{a_n}{S_n S_{n-1}^{\beta}}
$$
, where $\beta > 0$

6. Let $\{a_n\}$ be a sequence of positive terms, diverging to infinity. What can you say about the convergence of the following series?

(i)
$$
\sum_{n=1}^{\infty} \frac{1}{(a_n)^n}
$$
 (ii)
$$
\sum_{n=1}^{\infty} \frac{1}{(a_n)^{\log n}}
$$
 (iii)
$$
\sum_{n=1}^{\infty} \frac{1}{(a_n)^{\log \log n}}
$$

- 7. (Cauchy's Condensation Test) Let $\{a_n\}$ be a monotone decreasing sequence of non-negative terms. Prove that the series $\sum_{n=1}^{\infty}$ $n=1$ a_n converges (diverges) iff \sum^{∞} $n=1$ $p^n a_{p^n}$ converges (diverges).
- 8. Test the convergence of the following series

(i)
$$
\sum_{n=2}^{\infty} \frac{1}{n (\log n)^{\alpha}}
$$
, where $\alpha > 0$ (ii) $\sum_{n=3}^{\infty} \frac{1}{n (\log n) (\log(\log n))}$ (iii) $\sum_{n=0}^{\infty} \frac{(n!)^2}{(2n)!}$

 $n=2$ n=3ⁿ (esgn) $n=3$
9. (Logarithmic Test) Let $\sum_{n=0}^{\infty} a_n$ be a series of positive terms and lim $\sum_{n=1}^{\infty} a_n$ be a series of positive terms and $\lim_{n\to\infty} n \log \frac{a_n}{a_{n+1}}$ a_{n+1} $=$ l. Prove that $\sum_{n=1}^{\infty}$ $n=1$ a_n converges if $l > 1$ and diverges if $l < 1$. Also discuss the case when $l = 1$.

10. (Raabe's Test) Let $\sum_{n=1}^{\infty}$ $\sum_{n=1}^{\infty} a_n$ be a series of positive terms and $\lim_{n \to \infty} n \left(\frac{a_n}{a_{n+1}} \right)$ $\left(\frac{a_n}{a_{n+1}}-1\right) = l.$ Prove that $\sum_{n=1}^{\infty}$ $n=1$ a_n converges if $l > 1$ and diverges if $l < 1$. Also discuss the case when $l = 1$.

11. Study the behaviour of the following series

(i)
$$
\sum_{n=1}^{\infty} \frac{1}{2^{\sqrt{n}}}
$$
 (ii) $\sum_{n=1}^{\infty} \frac{1}{a^{\log n}}$, $a > 0$ (iii) $\sum_{n=1}^{\infty} \frac{1}{a^{\log(\log n)}}$, $a > 0$ (iv) $\sum_{n=1}^{\infty} a^{1 + \frac{1}{2} + \dots + \frac{1}{n}}$, $a > 0$ (v) $\sum_{n=0}^{\infty} \frac{n^n}{e^n n!}$

- 12. If $\sum_{n=1}^{\infty}$ $n=1$ a_n be a convergent series of positive terms, then what can you say about the convergence of the series $\sum_{n=1}^{\infty} \frac{a_1 + a_2 + \ldots + a_n}{n}$ $n=1$ $rac{n}{n}$?
- 13. (Integral Test) Let f be a non-negative decreasing function on $(1,\infty)$ such that the integral $\int^X f(x) dx$ 1 can be computed for all $X > 1$. If $\lim_{X \to \infty} \int_1^X$ $f(x) dx < \infty$ exists then the series $\sum_{n=1}^{\infty}$ $n=1$ $f(n)$ converges and if If $\lim_{X \to \infty} \int_1^X$ $f(x) dx = \infty$ then the series $\sum_{n=0}^{\infty} f(n)$ diverges. $n=1$
- 14. Let f be a positive and differentiable function on $(0, \infty)$ such that f' decreases to zero. Show that the series \sum^{∞} $n=1$ $f'(n)$ and $\sum_{n=0}^{\infty}$ $n=1$ $f'(n)$ $\frac{f(n)}{f(n)}$ either both converge or diverge.
- 15. (Kummer's Test) Let $\{a_n\}$ be a sequence of positive terms. Prove that (i) If there is a sequence $\{b_n\}$ of positive numbers and a positive constant c such that $b_n \frac{a_n}{a_{n-1}}$ $\frac{a_n}{a_{n+1}} - b_{n+1} \geq c$ for all $n \in \mathbb{N}$, then the series $\sum_{n=1}^{\infty}$

 $n=1$ a_n converges.

- (ii) If there is a sequence $\{b_n\}$ of positive numbers such that $\sum_{n=1}^{\infty}$ $n=1$ 1 $rac{1}{b_n}$ diverges and $b_n \frac{a_n}{a_{n+1}}$ $\frac{a_n}{a_{n+1}} - b_{n+1} \leq 0$ for all $n \in \mathbb{N}$, then the series $\sum_{n=1}^{\infty} a_n$ diverges.
-

What can you say about the converse of this test?

16. Let $\sum_{n=1}^{\infty}$ $n=1$ a_n be the series of positive terms and $\frac{a_n}{a_{n+1}} = 1 + \frac{\alpha}{n} + \frac{\phi(n)}{n^{\lambda}}$, where $\lambda > 1$ and $\{\phi_n\}$ is a bounded

sequence, then prove that the series $\sum_{n=1}^{\infty}$ $n=1$ a_n converges if $\alpha > 1$ and diverges if $\alpha \leq 1$.

17. Discuss the convergence of the hypergeometric series $\sum_{n=1}^{\infty}$ $n=1$ $\alpha(\alpha+1)...(\alpha+n-1)$ $n!$ $\frac{\beta(\beta + 1)...(\beta + n - 1)}{\gamma(\gamma + 1)...(\gamma + n - 1)}x^{n}$ where α , β γ are positive constants and $x > 0$.

3 Problems on alternating series

- 1. (Leibnitz's Test) If $\{a_n\}$ be a monotone decreasing sequence of positive real numbers and $\lim_{n\to\infty} a_n = 0$, then prove that the alternating series $\sum_{n=0}^{\infty} (-1)^{n-1} a_n$ converges.
- 2. (Dirichlet's Test) If $\{a_n\}$ be a monotone sequence converging to 0 and the n^{th} partial sum of the series

 \sum^{∞} $n=1$ b_n is bounded, then prove that the series $\sum_{n=1}^{\infty}$ $n=1$ $a_n b_n$ converges. Also check the convergence of \sum^{∞} $n=1$ $a_n^k b_n$, for

all natural number k if an extra condition that the series $\sum_{n=1}^{\infty}$ $n=1$ $|a_{n+1} - a_n|$ is convergent be added.

3. (Abel's Test) Let $\{a_n\}$ be a monotone convergent sequence and the series $\sum_{n=1}^{\infty}$ $n=1$ b_n is convergent. prove that

the series
$$
\sum_{n=1}^{\infty} a_n b_n
$$
 converges.

- 4. (D'Alembert's Ratio Test) Let $\sum_{n=0}^{\infty}$ $\sum_{n=1}^{\infty} a_n$ be a series of positive terms and $\lim_{n \to \infty} \frac{a_{n+1}}{a_n}$ a_n $=$ l. Prove that $\sum_{n=1}^{\infty}$ $n=1$ a_n converges if $l < 1$ and diverges if $l > 1$. Also discuss the case when $l = 1$. Generalise this for the series of arbitrary terms.
- 5. (Cauchy's Root Test) Let $\sum_{n=1}^{\infty}$ $\sum_{n=1}^{\infty} a_n$ be a series of positive terms and $\lim_{n \to \infty} (a_n)^{\frac{1}{n}} = l$. Prove that $\sum_{n=1}^{\infty} a_n$ $n=1$ a_n converges if $l < 1$ and diverges if $l > 1$. Also discuss the case when $l = 1$. Generalise this for the series of arbitrary terms.
- 6. What do you mean by an absolutely convergent and an unconditionally convergent series? Prove that every absolutely convergent series is unconditionally convergent. Is the converse true? Justify.
- 7. What do you mean by a conditionally convergent series? Prove that every non-absolutely convergent series is conditionally convergent. Is the converse true? Justify.
- 8. Does the condition $\lim_{n\to\infty}\frac{a_n}{b_n}$ b_n $= 1$ imply that the convergence of $\sum_{n=1}^{\infty}$ $n=1$ a_n is equivalent of the convergence of the

series
$$
\sum_{n=1}^{\infty} b_n?
$$

- 9. Assume that a series $\sum_{n=1}^{\infty}$ $n=1$ a_n is absolutely convergent and define $p_n = \frac{|a_n| + a_n}{2}$ $\frac{|+a_n|}{2}$ and $q_n = \frac{|a_n|-a_n}{2}$ $\frac{a}{2}$ for all $n \in \mathbb{N}$. Show that both the series $\sum_{n=1}^{\infty}$ $n=1$ p_n and $\sum_{n=1}^{\infty}$ $n=1$ q_n is convergent. What can you say about $\sum_{n=1}^{\infty}$ $n=1$ p_n and $\sum_{n=1}^{\infty}$ $n=1$ q_n , if $\sum_{n=1}^{\infty} a_n$ is conditionally convergent? $n=1$
- 10. Let $\{a_n\}$ be a sequence of positive terms converging to 0. Prove that if the series $\sum_{n=1}^{\infty}$ $n=1$ $a_n b_n$ converges then $\lim_{n \to \infty} a_n (b_1 + b_2 + \dots + b_n) = 0.$
- 11. Let α be a given positive number. Prove that if the series $\sum_{n=1}^{\infty}$ $n=1$ a_n $\frac{a_n}{n^{\alpha}}$ converges then $\lim_{n \to \infty} \frac{a_1 + a_2 + \dots + a_n}{n^{\alpha}}$ $\frac{n^{\alpha}}{n^{\alpha}}=0.$
- 12. Does there exists a convergent series $\sum_{n=1}^{\infty}$ $n=1$ a_n such that all the series of the form $\sum_{n=1}^{\infty}$ $n=1$ a_n^k , where $k \in \{2, 3, 4, ...\}$, diverge?
- 13. Decide whether the series are convergence, absolutely convergent, conditionally convergent, unconditionally convergent or divergent. √

(i)
$$
\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{\sqrt{n}} \quad \text{(ii) } \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n(n+1)} \quad \text{(iii) } \sum_{n=1}^{\infty} (-1)^n \frac{n}{n+2} \quad \text{(iv) } \sum_{n=1}^{\infty} \frac{(-1)^{\sqrt{n}}}{n^{\alpha}}, \alpha \in \mathbb{R}
$$
\n(v)
$$
\sum_{n=1}^{\infty} \frac{(-1)^n}{n} \sin\left(\frac{1}{n}\right) \quad \text{(vi) } \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos(n\alpha), \alpha \in \mathbb{R} \quad \text{(vii) } \sum_{n=1}^{\infty} (-1)^n \frac{n \log n}{e^n} \quad \text{(viii) } \sum_{n=1}^{\infty} \sin\left(\frac{\pi}{n}\right)
$$
\n(ix)
$$
\sum_{n=1}^{\infty} \frac{(-1)^{\{\sqrt{n}\}}(n+1)^n}{n^{n+\frac{3}{2}}} \quad \text{(x) } \sum_{n=1}^{\infty} \left(\sqrt[3]{n^3+1}-n\right) \quad \text{(xi) } \sum_{n=1}^{\infty} (-1)^n \frac{\sqrt{n+1}-\sqrt{n}}{n} \quad \text{(xii) } \sum_{n=1}^{\infty} \frac{(-1)^{\{\sqrt{n}\}}n^n}{(n+1)^{n+1}}
$$
\n(xiii)
$$
\sum_{n=1}^{\infty} \frac{\sin\left(n^{\frac{3}{2}}\right)}{n^{\frac{3}{2}}} \quad \text{(xiv) } \sum_{n=1}^{\infty} \frac{\frac{1}{2}+(-1)^n}{n} \quad \text{(xv) } \sum_{n=1}^{\infty} n^3 \left(\int_{-\pi}^{\pi} f(t) \sin nt \, dt\right), \text{ where } f \in c^1[-\pi, \pi]
$$
\n14. Find the sum of the series

(i) $\left(\frac{4}{20} + \frac{4.7}{20.30} + \frac{4.7.10}{20.30.40} + ...\right)$ (ii) $\left(\frac{1}{6} + \frac{5}{6.12} + \frac{5.8}{6.12.18} + \frac{5.8.11}{6.12.18.24} + ...\right)$ (iii) $\left(\frac{1}{1.2.3} + \frac{3}{2.3.4} + \frac{5}{3.4.5} + \frac{7}{4.5.6} + ...\right)$ (iv) $\left(\frac{1}{2.3.4} + \frac{20.00}{4.5.6} + \frac{1}{6.7.8} + ...\right)$ (v) $\left(\frac{1}{3!} + \frac{3}{4!} + \frac{9}{5!} + ...\right)$ (vi) $\left(\frac{1}{2!} + \frac{3}{4!} + \frac{1}{4!} + \frac{1}{5!} + ...\right)$ $\frac{1}{2.3}2 + \frac{2}{3.4}2^2 + \frac{3}{4}$ $\frac{3}{4.5}2^3 + ...$) (vii) $\left(\frac{5}{3}\right)$ 3.6 1 $\frac{1}{4^2} + \frac{5.8}{3.6}$ 3.6.9 1 $\frac{1}{4^3} + \frac{5.8.11}{3.6.9.1}$ 3.6.9.12 1 $\frac{1}{4^4} + ...$ (viii) $\left(1 - \frac{1}{2} - \frac{1}{3} + \frac{1}{4} + \frac{1}{5} - \frac{1}{6} - \frac{1}{7} + ...\right)$ (ix) $\left(1 + \frac{1}{9} + \frac{1}{25} + \frac{1}{49} + ...\right)$

(x)
$$
\left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + ...\right)
$$
 (xi) $\left(1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + ...\right)$ (xii) $\left(\frac{1}{5} + \frac{1}{3}\frac{1}{5^3} + \frac{1}{5}\frac{1}{5^5} + ...\right)$

4 Problems on Cauchy product of infinite series

1. If at least one of the following convergent series $\sum_{n=1}^{\infty}$ $n=0$ a_n and $\sum_{n=1}^{\infty}$ $n=0$ b_n be absolutely convergent then prove that the series of their Cauchy product $\sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \right)$ a_kb_{n-k} $\bigg\}$ converges. Moreover if $\sum_{n=1}^{\infty}$ $n=1$ $a_n = A$ and $\sum_{n=1}^{\infty}$ $n=1$ $b_n = B$, then prove that $\sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \right)$ 2. Prove that if the Cauchy product $\sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \right)$ a_kb_{n-k} \setminus $= AB$. a_kb_{n-k} $\Big)$ of two convergent series $\sum_{n=1}^{\infty}$ $a_n = A$ and $\sum_{n=1}^{\infty}$ $b_n = B$,

 $n=0$

 $n=0$

.

3. Prove that the Cauchy product of two convergent series $\sum_{n=1}^{\infty}$ $n=0$ a_n and $\sum_{n=1}^{\infty}$ $n=0$ b_n converges iff \boldsymbol{n}

$$
\lim_{n\to\infty} \sum_{k=1} a_k (b_n + b_{n-1} + \dots + b_{n-k+1}) = 0
$$
\n4. Find the sum of the series\n(i)
$$
\sum_{n=0}^{\infty} nx^{n-1}, |x| < 1
$$
\n(ii)
$$
\sum_{n=0}^{\infty} nx^{n-1}, |x| < 1
$$
\n(iii)
$$
\sum_{n=0}^{\infty} \left(\sum_{k=0}^n x^k y^{n-k} \right), |x| < 1, |y| < 1
$$
\n(iii)
$$
\sum_{n=1}^{\infty} \left(\sum_{k=1}^n \frac{1}{k(k+1)(n-k+1)!} \right)
$$
\n5. Fin the sum of the Cauchy product for the following series\n(i)
$$
\sum_{n=0}^{\infty} \frac{2^n}{n!}, \text{ and } \sum_{n=0}^{\infty} \frac{1}{2^n n!}
$$
\n(ii)
$$
\sum_{n=0}^{\infty} (-1)^n \frac{1}{n}, \text{ and } \sum_{n=0}^{\infty} \frac{1}{3^n}
$$
\n(iii)
$$
\sum_{n=0}^{\infty} (n+1)x^n, \text{ and } \sum_{n=0}^{\infty} (-1)^n (n+1)x^n
$$
\n(iv)
$$
\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(n!)^2}, \text{ and } \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(n!)^2}
$$
\n6. What is our mean by a double series and its convergence?

6. What do you mean by a double series and its convergence?

converges to C then $C = AB$.

5 Problems on rearrangement of infinite series

- 1. If $\sum_{n=1}^{\infty}$ $n=0$ a_n be a series of arbitrary terms and $\sum_{n=1}^{\infty}$ $n=0$ b_n is obtained from $\sum_{n=1}^{\infty}$ $n=0$ a_n by grouping its terms then prove that the convergence of $\sum_{n=1}^{\infty}$ $n=0$ a_n implies to the convergence of $\sum_{n=1}^{\infty}$ $n=0$ b_n to the same sum. What can you say about the convergence of $\sum_{n=1}^{\infty} a_n$, when $\sum_{n=1}^{\infty} b_n$ is convergent?
- 2. Prove that the rearrangement series of an absolutely convergent series converges to the same sum.
- 3. Show that the series $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\dots$ converges to log 2. Also find the rearrangements of the above series so that the rearrangement series converge to $\frac{3}{2} \log 2$, 0 and $\frac{1}{2} \log 12$ respectively.
- 4. Rearrange the terms of $\sum_{n=1}^{\infty}$ $n=1$ $(-1)^{n-1}\frac{1}{2}$ $\frac{1}{n^p}$, $p \in (0,1)$ to increase its sum by l.

6 Problems on infinite products

1. Find the value of (i) \prod^{∞} $n=2$ $\left(1-\frac{1}{2}\right)$ $n²$ (ii) $\prod_{n=1}^{\infty} \left(\frac{e^{\frac{1}{n}}}{1 +} \right)$ $1 + \frac{1}{n}$ $\Bigg)$ (iii) \prod^{∞} $n=2$ $\left(1 + \frac{1}{2}\right)$ $\frac{1}{n^2} + \frac{1}{n^4}$ $\frac{1}{n^4} + \frac{1}{n^6}$ $\frac{1}{n^6} + \dots \bigg)$ 2. Study the convergence of (i) \prod^{∞} $n=1$ $n \sin \left(\frac{1}{n} \right)$ n \int (ii) \prod^{∞} $n=1$ $\sqrt[n]{n}$ (iii) \prod^{∞} $n=1$ $n \log \left(1 + \frac{1}{n} \right)$ n \setminus